JONENG VALVES CO., LIMITED

ZZYP TYPE AUTOMATIC PRESSURE **REGULATING CONTROLL VALVE**

OPERATION INSTRUCTION

Catalogue

1.	Application and feature	1
2.	Structure and working principle	1-2
3.	Main technical data and property index , material	.3-5
4.	Installation, operation, maintenance	.5-9
5.	How do order	.10
6.	The type of ZZYP pressure regulating valve	.11
7.	The size of flange	.12

1. Application and feature

ZZYP type pressure regulating valve is a self-regulating actuator product that reply on the medium's energy to realize regulation fucntion without any extra energy. The most important feature of the product is that it can work without electricity and gas power which is very saving energy. And we can adjust the pressure value when it is working. This valve is widely used in oil, chemical, electricity, metallurgy, food, light textile, machinery and residents buildings and etc industries to control the gas, liquid and steam to reduce pressure, inlet pressure regulation, or relief pressure , outlet pressure regulation. This valve is performing fast and with very good seal.

2. Structure and working principle

The control valve is consisted of detecting actuator, regulating control valve, condenser and outlet pipe. (the structure as drawing 1).

Drawing-1a is pressure regulating valve used for controlling outlet pressure . Mode of action is pressure closed . The working principle is : medium flow into the valve body, then into valve core, and then throttling by valve seat then flow out . The other way is used when the medium is steam, the medium go through condenser and goes into the actuator and act on the diaphragm, at the same time the valve core's place is also changed, in this case the valves realize to reduce pressure and steady pressure . If outlet pressure is increased, the power acting on diaphragm is increasing accordingly, then the spring is compressed and drive valve core , than the opening channel is becoming smaller and smaller until the outlet pressure reduced the set value . The same principle , if outlet pressure is decreased ,the power that act on diaphragm is decreasing , because of compress spring's Reacting force it can drive the valve core , than the opening channel is becoming channel is becoming channel is becoming channel is becoming the actuation of compress spring's Reacting force it can drive the valve core , than the opening channel is becoming channel is becoming channel is becoming channel is becoming bigger and bigger until the outlet pressure increased the set value.

Drawing-1a ZZYP-16B pressure regulating valve

JONENG VALVES CO., LIMITED

Drawing-b. is pressure regulating valve used for controlling inlet pressure . Mode of action is pressure open type .The working principle is : medium flow into the valve body as the direction of arrow, The other way is used when the medium is steam , the medium go through condenser and goes into the actuator and act on the diaphragm, at the same time the valve core's place is also changed, in this case the valves realize to reduce pressure and steady pressure . If inlet pressure is increased, the power acting on diaphragm is increasing accordingly, then the spring is compressed and drive valve core , than the opening channel is becoming bigger and bigger until the inlet pressure reduced the set value . The same principle , if inlet pressure is decreased ,the power that act on diaphragm is decreasing , because of compress spring's Reacting force it can drive the valve core , than the opening channel is becoming channel is becoming smaller and smaller until the outlet pressure increased the set value.

Drawing-1b ZZYP-16B pressure regulating valve

1.inlet ferrule 2.Exhaust plug 3.detection actuator 4.inlet pipe 5.Gland screw 6.condenser 7.spring 8.valve rod 9.valve core 10.bellows 11.regulate pressure plate 12.screws 13.take pressure pipe 16.valve body 14.outlet pipe 15.valve seat

3. Main technical data and property index , material

Juli	teennear	uata	ana	prope	July	muex						1 011		
size	DN (mm)	20	25	32	40	50	65	80	100	125	150	200	250	300
flowcoe	efficient(Kv)	7	11	20	30	48	75	120	190	300	480	760	1100	1750
Flo	• (mm)	8	3	1	0	14	2	20	25	4	0	50	60	70
Pressu	repn (MPa)						1.6	. 4.0.	6.4					
Press regula	sure (Kpa) ate rage	15~50 280~3 780~9	40~ 50 00	80 80 330~40 880~10	>>100 00 38 000 €	80~17 30~450 500~150	430~ 00 1	0~180 500 4 000~25	180~ 180~56 500	0 540	~620	600~7	700 68	80~800
Regulate p	precision(%)	±5												
Tempera	ture (°C)							<350)					
Allowed	Hard seal (1/h)	Single seat $\leq 10^{-1}$ Value's (Ⅳ级); Double seat : $< 5 \times 10^{-3}$ Value's (Ⅱ级)											级)	
quantity	Soft seal (nl/h)	0.	15	0.	30	0.45	0.60	0.90	1.7	4	. 0	6.75	11.10	11.60
Pressure	Max	10												
reducing ratio	Min							1.25	l.					

1)Main technical data and property index

2) Pressure regulating rang

Pressure regulating rang has several stages, details please see the form of Main technical parameters and property index. It is better to choose the middle value of the pressure range. (refer form1).

3) Outlet pressure regulating valve and relation between inlet pressure and out pressure.

Automatic regulating valve is a regulating system and there is some requirements for reducing pressure . For B type outlet pressure regulating valve , in order to guarantee the outlet pressure in a proper range , the inlet pressure must achieve a proper number . Requirement please see Form 2.

Form2

Form 1

												10	11112
Inlet pressure KPa	30	50	100	150	200	250	300	350	400	450	500	550	600
Outlet pressure KPa	15~24	15~40	15~80	15~120	20~160	25~200	30~240	35~280	40~320	45~360	50~400	55~440	60~480
Inlet pressure KPa	650	700	750	800	850	900	950	1000	1250	1500	2000	2500	3000
Outlet pressure KPa	65~ 520	170~ 560	75~ 600	80~ 640	85~ 680	90~ 720	95~ 760	100~ 800	125~ 1000	150~ 1200	200~ 1600	250~ 2000	300~ 2400

Sharp dimension drawing

4)Sharp dimension and weight

Unit :mm

Form 3

	Size DN		20	25	32	40	50	65	80	100	125	150	200	250	300
Flange's adapter size ${ m B}$			383		512		603	862		1023	1380		1800	2000	2200
Flang face di	e face to L mension		150	160	180	200	230	290	310	350	400	480	600	730	850
	15-140	H	475		520		540	710		780	840	880	915	940	1000
Pı	15-140	A	28	30				308			4 938 944			314 S11	
ess	120.200	Н	455		500		520	690		760	800	870	880	900	950
ure	130-300	A		230											
regi	280-500	Н	450		490		510	680		750	790	860	870	890	940
ılatı		A			176			194			280				
e rai	100 1000	Н	445		480			6	70	740	780	850	860	880	930
nge	480-1000	A	176					194			280				
K Da	000 1500	H	44	15	5′	70	600	8:	820 890		950 10		1000	1100	1200
кга	600-1500	A	8	5			30 S	96							
	1000 0500	Н	44	45	570		600	820		890	950		1000	1100	1200
	1000-2500	A	8	5				2		96				0	
W	/eight kg	10	2	6	3	7	42	72	90	114	130	144	180	200	250
Adaper's screw					<i>N</i>		20 S		M16⊡1.	5	2 N			14 N	

5)Main parts' material (Form 4)

```
Form 4
```

Parts' name	Metarial
Valve body	ZG230-450、ZGICr18Ni9Ti、ZGCr18Ni12Mo2Ti
Valve core	lCr18Ni9Ti、Cr18Ni12Mo2Ti
Valve seat	lCr18Ni9Ti、Cr18Ni12Mo2Ti
Valve rod	lCr18Ni9Ti, Cr18Ni12Mo2Ti
Rubber diaphragm	Chemigum, EPR, FKM, Oil resistant rubber
Diaphragm cap	A3、A4 Steel coated TFE
Filter	PTFE, soft graphite

Valve core structure types

Valve body working temperature and allowed pressure

4. Installation ,use and maintenance

1)Installation

When the valve is working in gas or other low viscous liquid medium (normal temperature ($\leq 80C$), the valve is installed on horizontal direction in upright direction like pneumatic diaphragm regulating valve. Details as drawing 3.

A、ZZYP-16B type self-operated pressure valve

1. globe valve 2.pressure gauge 3.filter 4.self-operated pressure regulating valve 5.pressure gauge

If the medium is steam , the regulating valve must be installed on horizontal pipe in inverted direction . As drawing 4 .

B. ZZYP-16K type regulate valve

1.globe valve2.6. pressure gauge3.filter4.condenser5.regulating valveDrawing 4Installation : the medium is steam

When you install the valve pleas note these points:

A)Condenser must be higher than valve's actuator but lower than outlet's connecting pipe (for outlet regulating valve) or inlet's connecting pipe (for inlet regulating valve) , to guarantee the condenser is filled with condenser liquid .

B)Pressure measuring point should take a suitable place , inlet pressure valve should be further than 2 times of the pipe diameter , outlet regulating valve should be further than 6 times of pipe diameter.

C)In order to convenient for maintenance and operation ,there is be leaving some space for the regulating valve. Before and after the valve, there should be installing globe valve and bypass manual valve. Details as drawing 5

Drawing 5 installation plans

Note: The dotted line' meaning : another proper direction for inlet and outlet . D)If the regulating valve size is too large ($DN \ge 100$), should install bracket .

E)Medium flow's direction should be the same as the arrow on the valve body . Inlet and outlet pipe center , regulating valve's flanges center must be in line to avoid valve body bearing too heavy stress .

F) Before the regulating valve, we should set a filter to avoid blocked by impurities in the medium .

G)Regulating valve should be installed in proper environment that the temperature is -25 $^\circ\!C$ -~55 $^\circ\!C$.

2. Usage

Operational program for gas or low viscosity at normal temperature . See drawing 3.

A).

B)Loosen exhaust plug until the gas or liquid flow out from actuator.

C)Than tightened exhaust plug, the regulating valve can working now. The pressure can be adjusted by pressure regulate plate. Pay attention to the pressure value, action should be slow, don't let valve rod moving with.

Operational program for steam. See drawing 4.

A)remove the entrance screws from condenser.

B)Loosen exhaust plug

C)Use drain head to add water through entrance mouth until water flow out from vent .

D)Tighten exhaust plug, continue adding water until it flow out entrance .

E)Tighten screws of entrance.

F) Open the globe valve before and after the regulating valve slowly

G)Adjusted pressure regulate plate, and pay attention to the pressure number until achieve the requirement .

3. Maintenance

JONENG VALVES CO., LIMITED

After the regulating valve is running normally, generally maintain workload is very small, only need to observe the pressure value is whether at the proper rang that suit for your application . And observe whether the stuffing box and actuator is leaking . If it is leaking, please tighten or replace padding and diaphragm.

Form 5		
Fault phenomenon	Reason	Method
Outlet pressure is changing	1.valve core get stuck	1.disassemble and
when inlet pressure	2. Valve rod, plush rod get	reassemble again
changes	stuck	2.Adjusted again
	3.Entrance pipe locked.	3.Dredge
Outlet pressure can't	1.set spring stiffness too large	1.replace spring
decrease, staying higher	2.Valve dia. too big	2.Use less size diam.
than requirement value	3.Inlet pressure too high,	valve
	pressure reducing ratio too	3.Inlet pressure: if
	large	outlet pressure >10:1,
		should be decrease two
		stage's pressure
Outlet pressure can't	1.set spring stiffness too light	1.replace spring
increase, staying lower	2.Valve dia too small	2.Use large size diam.
than requirement value	3. pressure reducing ratio too	3.Inlet pressure:if
	small.	outlet pressure <1:25,
	\sim	should be increase inlet
		pressure
Inlet pressure can't	1.spring stiffness too light	1.replace spring
increase, staying lower	2. Valve core locked	2.dismounting again
than requirement value	3. Valve rod, plush rod locked	3.adjust again
	4.valve cord, valve seat is	4.grinding again or
	damaged, leaked too heavy	replace
	5.valve's dia too large	6.lessen diam
inlet pressure can't	1. stiffness too big	1.replace spring
decrease, staying higher	2.Valve dia too small	2.Use large size diam
than requirement value	3.valve core, valve rod, plush	3.Solve locked and
	rod are locked	adjust again
Outlet pressure or inlet	1.valve dia too large	1.choose proper size
pressure changes too often	2. Actuator's capacity is too	diam
	less	2.Add damper at
		entrance pipe

H How to order

When ordering please offer these information:

Туре	Name	
Nominal Size	Nominal pressure	
Signal Range	Action mode	
Medium data	Working temp.	5
Rated flow rate	Set flow feature	
Max inlet pressure	Max outlet pressure	
Min inlet pressure	Min outlet pressure	
Normal inlet pressure	Normal outlet pressure	
Max flow	Liquid viscosity	
Min flow	Liquid severe	
Normal flow	Gas severe	
Material : valve core		
Valve body	Remarks	
Parts inside		
Padding		
pipe size	Other requirements like	
	collision resistant	
Regulating pressure range		
Regulating temperature		
range		
Pressure difference range		
Micro pressure difference		
range		

I. ZZYP regulating valve model

Example

050ZZYP10B12S0280-350P means the valve diameter is 50mm, valve seat pressure is 1.0MPA, the valve is outlet pressure regulating valve, the flanges is standard type, without condenser, pressure regulating range is 280-350KPA, the valve material is stainless steel.